Nonexistence of distributional supersolutions of a semilinear elliptic equation with Hardy potential

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential

Let Ω ⊂ RN be a smooth bounded domain such that 0 ∈ Ω , N ≥ 5, 0 ≤ s < 2, 2∗(s) = 2(N−s) N−2 . We prove the existence of nontrivial solutions for the singular critical problem − u − μ u |x |2 = |u| 2∗(s)−2 |x |s u + λu with Dirichlet boundary condition on Ω for all λ > 0 and 0 ≤ μ < ( N−2 2 )2 − ( N+2 N )2. © 2005 Elsevier Ltd. All rights reserved. MSC: 35J60; 35B33

متن کامل

Existence and nonexistence of positive solutions of semilinear elliptic equation with inhomogeneous strong Allee effect

In this paper, we study a semilinear elliptic equation defined on a bounded smooth domain. This type of problem arises from the study of spatial ecology model, and the growth function in the equation has a strong Allee effect and is inhomogeneous. We use variational methods to prove that the equation has at least two positive solutions for a large parameter if it satisfies some appropriate cond...

متن کامل

Asymptotic Behavior of Solutions to Semilinear Elliptic Equations with Hardy Potential

Let Ω be an open bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω, 0 ∈ Ω. We are concerned with the asymptotic behavior of solutions for the elliptic problem: (∗) −∆u− μu |x|2 = f(x, u), u ∈ H 0 (Ω), where 0 ≤ μ < ( N−2 2 )2 and f(x, u) satisfies suitable growth conditions. By Moser iteration, we characterize the asymptotic behavior of nontrivial solutions for problem (∗). In particular, we...

متن کامل

Large Solutions to Semilinear Elliptic Equations with Hardy Potential and Exponential Nonlinearity

On a bounded smooth domain Ω ⊂ R we study solutions of a semilinear elliptic equation with an exponential nonlinearity and a Hardy potential depending on the distance to ∂Ω. We derive global a priori bounds of the Keller–Osserman type. Using a Phragmen–Lindelöf alternative for generalized sub and super-harmonic functions we discuss existence, nonexistence and uniqueness of so-called large solut...

متن کامل

”boundary Blowup” Type Sub-solutions to Semilinear Elliptic Equations with Hardy Potential

Semilinear elliptic equations which give rise to solutions blowing up at the boundary are perturbed by a Hardy potential μ/δ(x, ∂Ω). The size of this potential effects the existence of a certain type of solutions (large solutions): if μ is too small, then no large solution exists. The presence of the Hardy potential requires a new definition of large solutions, following the pattern of the asso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2013

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2012.09.021